Journal of Organometallic Chemistry, 145 (1978) C7–C10 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

DIAZABUTADIENES AS σ,π-BRIDGING LIGANDS IN BINUCLEAR MOLYBDENUM CARBONYL COMPLEXES CONTAINING MOLYBDENUM—MOLYBDENUM DOUBLE BONDS

L.H. STAAL, A. OSKAM and K. VRIEZE*

Anorganisch Chemisch Laboratorium, J.H. van 't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam (The Netherlands)

(Received November 10th, 1977)

Summary

Reduction of Mo(CO)₄ DAB (DAB = diazabutadiene) followed by oxidation with Mn(CO)₃ BrDAB or HCl gives a small yield (15 to 25%) of complexes of the type Mo₂ (CO)₆ (DAB)₂, in which the two DAB ligands bridge a molybdenum—molybdenum double bond and act as σ,π -donors.

As part of our investigations on the coordination properties of diazabutadienes (DAB) ($\mathbb{R}^1 \operatorname{N=C}(\mathbb{R}^2) \operatorname{C}(\mathbb{R}^2) = \operatorname{NR}^1 = \alpha$ -diimine) and on the electronic properties of these ligands in complexes with metals in a low oxidation state [1], we have investigated the behaviour of ($\operatorname{Mo}(\operatorname{CO})_4 \operatorname{DAB}$)⁻ in oxidation reactions.

DAB is known to act as a σ -donor monodentate ligand [1,2], a σ , σ -donor bridging ligand, a σ , σ -donor chelating ligand [3—15] and a σ , π - and π , π -chelating ligand [16,17]. We now report the isolation and characterization of the first examples of metal—DAB complexes in which DAB acts as a σ , π -bridging ligand in binuclear molybdenum carbonyl complexes with metal—metal double bonds.

tom Dieck et al. have shown that $Mo(CO)_4$ DAB can be reduced by sodium and potassium using various ethers as solvents [18]. We reduced $Mo(CO)_4$ DAB with sodium—potassium alloy according to Ellis and Flom [19]. The proposed structure of the reduced $(Mo(CO)_4 DAB)^-$ is shown in Fig. 1.

Subsequent oxidation of the reduced complexes with mild oxidizing agents gives, in addition to the starting material $Mo(CO)_4$ DAB, a novel type of complex Mo_2 (CO)₆ (DAB)₂. When $Mn(CO)_3$ Br(t-BuN=CHCH=N-t-Bu) is used as oxidizing agent, yields are in the range of 15 to 25%. In addition to the com-

^{*}To whom correspondence should be addressed.

Fig. 1. The proposed structure of $(Mo(CO)_4 DAB)^{-}K^{+}$.

plexes $Mo_2 (CO)_6 (DAB)_2$, KBr and $Mn_2 (CO)_{10}$ were formed and were isolated and identified. The molecular weights and elemental analyses are in accord with dimeric structures (see Table 1).

TABLE 1

TABLE 2

ANALYTICAL DATA AND MOLECULAR WEIGHTS (calculated values in parentheses)

R	C	%Н	%N	% 0	Mol. wt.	
t-Bu	44.82	5.74	8.04	13.79	704	
	(44.24)	(5.72)	(8.03)	(13.88)	(696)	
i-Pr	41.15	5,44	8.77	13,33	646	
	(41.25)	(5.00)	(8.75)	(15.00)	(640)	

The IR spectra of $Mo_2(CO)_6(DAB)_2$ show five to six bands between 2000 and 1800 cm⁻¹ belonging to the CO vibrations of six terminal CO groups. At 1630 cm⁻¹ there is a broad band, which is assigned to ν (C=N). The infrared frequencies of ν (CO) are listed in Table 2.

IR DATA OF Mo2 (CO)6 (DAB)2 IN CH2 Cl2 SOLUTIONS (cm-1)

R						
t-Bu	1998	1944	1887ª	1874	1850	
i-Pr	1997	1942	1890	1875	1845	

^aShoulder at high wavenumber side of the band.

¹H NMR data (see Table 3) indicate that the ligand moieties (RN=CH--) are unsymmetrically bonded. In the free ligands the resonances of the imino protons (--N=CH--) are found at about 8.0 ppm, and for the σ,σ -bonded DAB, ligand, for example in Mo(CO)₄ DAB, they are at 8.2 ppm. In the dinuclear molybdenum carbonyl complexes the resonances of the imino protons are found as doublets at 8.8 and 8.4 ppm, with a coupling of 1.6 Hz. TABLE 3

'H NMR DATA OF $Mo_2(CO)_6(DAB)_2$; SOLVENT ACETON- d_6				
R	δ(ppm)			
t-Bu	$\delta(C(CH_1), 1.01, 1.38 \ \delta(H^{imino}) 4.09, 8.86^{a})$			
i-Pr	$\delta(C(CH_3)_2)$ 1.03, 1.37 ^b $\delta(H-C)^{i-Pr}$ 3.20, 4.02 ^b $\delta(H^{imino})$ 4.02, 8.68 ^c			

^aJ 1.6 Hz. ^bJ 6.7 Hz. ^cJ 1.6 Hz.

An upfield shift of the resonances of the imino protons indicate π -coordination. For example, Fe(CO)₃ (t-BuN=CHCH=N-t-Bu), in which DAB acts as a σ,π -donor chelating ligand, there is an upfield shift of the imino proton of the π -bonded C=N group, which appears at 6.35 ppm [16]. In Mo₂ (CO)₆ (DAB)₂ the shielding of the imino protons of the π -bonded imino group is even larger.

On the basis of the NMR data the structures shown in Fig. 2a and 2b must be considered.

Fig. 2. Proposed structures of Mo₂ (CO)₆ (DAB)₂ as derived from NMR data.

The molybdenum—molybdenum bond must be formally a double bond, otherwise both metals would have a 17 electron configuration. Structure 2b is rather unlikely: metal—metal bonds are known to be stabilized by forming a five-membered ring with chelating ligands. The σ,π -bridging mode for the DAB ligand in Mo₂ (CO)₆ (DAB)₂ is supported by the observation of five to six CO vibrations, because σ,π -chelation which would give rise to a mirror plane through the molybdenum—molybdenum bond, would result in only three CO vibrations. Because of the arguments mentioned above the proposed structure of the complexes Mo₂ (CO)₆ (DAB)₂ can only be as shown in Fig. 2a. Complete details of these and related complexes will be described in a forthcoming paper.

References

- L.H. Staal, D.J. Stufkens and A. Oskam, Inorganica Chimica Acta, in press. 1
- 2 H, van der Poel, G. van Koten and K. Vrieze, J. Organometal. Chem., 135 (1977) C63.
- 3 H. Bock and H. tom Dieck, Chem. Ber., 100 (1967) 228.
- L. Linday and S. Livingstone, Coord. Chem. Rev., 2 (1967) 173. 4
- H. Friedel, I.W. Renk and H. tom Dieck, J. Organometal. Chem., 26 (1971) 247. 5
- H. tom Dieck and I.W. Renk, Angew. Chem., 82 (1970) 19, 805. H. tom Dieck and I.W. Renk, Chem. Ber., 104 (1971) 110. 6
- 7
- 8 H. tom Dieck and I.W. Renk, Chem. Ber., 105 (1972) 1403.
- H. tom Dieck and I.W. Renk, Chem. Ber., 105 (1972) 1419. 9
- 10 D. Walter, J. Prakt. Chem., 316 (1974) 604.
- K.D. Franz, H. tom Dieck, K.A. Ostoja Starzewski and F. Hohmann, Tetrahedron, 31 (1975) 1465. 1E
- H. tom Dieck, I.W. Renk and K.D. Franz, J. Organometal. Chem., (1975) 417. 12
- 13 W. Majunke, D. Leibfritz, T. Mack and H. tom Dieck, Chem. Ber., 108 (1975) 3025.
- H. tom Dieck and M. Svoboda, Chem. Ber., 109 (1976) 1657, 14
- A.T.T. Hsieh and B.O. West, J. Organometal. Chem., 12 (1976) 285. 15
- H. tom Dieck and A. Orlopp, Angew. Chem. internat. Edit., 14 (1975) 4, 251. 16
- D. Leibfritz and H. tom Dieck, J. Organometal. Chem., 105 (1976) 255. 17
- K.D. Franz, H. tom Dieck, U. Krynitz and I.W. Renk, J. Organometal. Chem., 64 (1974) 361. J.E. Ellis and E.A. Flom, J. Organometal. Chem., 99 (1975) 263. 18
- 19
- J. Kuyper, P.I. van Vliet and K. Vrieze, J. Organometal. Chem., 96 (1975) 289. 20
- 21 J. Kuyper and K. Vrieze, J. Organometal. Chem., 107 (1976) 129.
- 22 P.J. van Vliet, J. Kuyper and K. Vrieze, J. Organometal. Chem., 122 (1976) 99.